
The Data and AI Company

Simplifying upserts
and deletes on

2

Prashanth Babu
EMEA RSA Practice Lead

Tue 15th Jun,
2021

Intro

Challenges with Data Lakes

Features of Delta Lake

1

2

3

Update, Delete & Upsert on
a Delta Lake table4

Optimize & Vacuum of a
Delta Lake table5

Agenda

Demos6

Outro and further
references7

About Me

Prashanth Babu
Practice Lead - Resident Solutions Architect

@ Databricks, London -- since 2018

https://www.linkedin.com/in/P7h

https://www.linkedin.com/in/P7h

5000+
Across the globe

CUSTOMERS

The Data and AI Company

 Lakehouse
One simple platform to unify all of

your data, analytics, and AI workloads

ORIGINAL CREATORS

Lakehouse Platform
Open | Simple | Collaborative

Data Science &
Engineering

BI &
SQL Analytics

Machine Learning Real-time Data
Applications

Data Management & Governance

Open Data Storage

Structured Semi-structured Unstructured Streaming

We’re working with enterprises in every industry

Energy & Utilities Digital Native

Healthcare & Life Sciences Financial ServicesManufacturing & Automotive Media & Entertainment

Public Sector Retail & CPG

Challenges with
Data Lakes

The future is here, it’s just not evenly distributed

$3.9T

83% CEOs say AI is a
strategic priority

Business value created
by AI in 2022

85% Of big data
projects fail

87% Of data science projects
never make it into production

Challenges with Data Lakes

1. Hard to append data
Adding newly arrived data leads to incorrect reads

2. Modification of existing data is difficult
GDPR/CCPA requires making fine grained changes to
existing data lake

3. Jobs failing mid way
Half of the data appears in the data lake, the rest is missing

10

Challenges with Data Lakes

4. Real-time operations
Mixing streaming and batch leads to inconsistency

5. Costly to keep historical versions of the data
Regulated environments require reproducibility, auditing,
governance

6. Difficult to handle large metadata
For large data lakes the metadata itself becomes difficult to
manage

11

Challenges with Data Lakes

7. “Too many files” problems
Data lakes are not great at handling millions of small files

8. Hard to get great performance
Partitioning the data for performance is error-prone and
difficult to change

9. Data quality issues
It’s a constant headache to ensure that all the data is correct
and high quality

12

13

A new standard for building data lakes

An opinionated approach to
building robust Data Lakes

■ Adds reliability, quality,
performance to Data Lakes

■ Brings the best of data
warehousing and data lakes

■ Builds on an open format
(parquet) and adds an open
source transaction log

14

15

Delta Lake is comprised of:

▪ Delta tables

▪ The Delta optimization engine

▪ The Delta Lake storage layer

Delta Lake offers:

■ ACID transactions on Spark

■ Scalable metadata handling

■ Streaming and batch unification

■ Schema enforcement

■ Time travel

■ Upserts and deletes

■ Fully configurable/optimizable

■ Structured Streaming support

16

ACID Transactions

/path/to/table/_delta_log
- 0000.json
- 0001.json
- 0002.json
- …
- 0010.parquet

1. Hard to append data

2. Modification of existing data difficult

3. Jobs failing mid way

4. Real-time operations hard

5. Costly to keep historical data versions

6. Difficult to handle large metadata

7. “Too many files” problems

8. Poor performance

9. Data quality issues

Delta Lake tackling the challenges with Data Lakes

17

Make every operation transactional

• It either fully succeeds - or it is fully
aborted for later retries

ACID Transactions
Make every operation transactional

• It either fully succeeds - or it is fully
aborted for later retries

Review past transactions

• All transactions are recorded and you
can go back in time to review previous
versions of the data (i.e. time travel)

SELECT * FROM events
TIMESTAMP AS OF >>.

SELECT * FROM events
VERSION AS OF >>.

1. Hard to append data

2. Modification of existing data difficult

3. Jobs failing mid way

4. Real-time operations hard

5. Costly to keep historical data versions

6. Difficult to handle large metadata

7. “Too many files” problems

8. Poor performance

9. Data quality issues

Delta Lake tackling the challenges with Data Lakes

18

Spark under the hood
• Spark is built for handling large

amounts of data
• All Delta Lake metadata stored in open

Parquet format
• Portions of it cached and optimized for

fast access
• Data and its metadata always co-exist.

No need to keep catalog<>data in sync

1. Hard to append data

2. Modification of existing data difficult

3. Jobs failing mid way

4. Real-time operations hard

5. Costly to keep historical data versions

6. Difficult to handle large metadata

7. “Too many files” problems

8. Poor performance

9. Data quality issues

Delta Lake tackling the challenges with Data Lakes

19

Indexing
Automatically optimize a layout that
enables fast access
• Partitioning: layout for typical queries
• Data skipping: prune files based on

statistics on numericals
• Z-ordering: layout to optimize multiple

columns
• Auto-optimize – periodically re-layout

data in the background

1. Hard to append data

2. Modification of existing data difficult

3. Jobs failing mid way

4. Real-time operations hard

5. Costly to keep historical data versions

6. Difficult to handle large metadata

7. “Too many files” problems

8. Poor performance

9. Data quality issues OPTIMIZE events
ZORDER BY (eventType)

Delta Lake tackling the challenges with Data Lakes

20

Schema validation,
evolution

Schema validation and evolution
• All data in Delta Tables have to adhere

to a strict schema validation
• But also includes schema evolution in

merge operations

1. Hard to append data

2. Modification of existing data difficult

3. Jobs failing mid way

4. Real-time operations hard

5. Costly to keep historical data versions

6. Difficult to handle large metadata

7. “Too many files” problems

8. Poor performance

9. Data quality issues

MERGE INTO events
USING changes
ON events.id = changes.id
WHEN MATCHED THEN
 UPDATE SET *
WHEN NOT MATCHED THEN
 INSERT *

Delta Lake tackling the challenges with Data Lakes

21

Updates, Deletes and Upserts
on a Delta Lake Table

22

Updates, Deletes and
Upserts

In this talk, we will focus on the following

23

1. Hard to append data

2. Modification of existing data difficult

3. Jobs failing mid way

4. Real-time operations hard

5. Costly to keep historical data versions

6. Difficult to handle large metadata

7. “Too many files” problems

8. Poor performance

9. Data quality issues

Optimize and Vacuum

Sample Use cases

24

• GDPR compliance
• CDC from traditional

dbs
• Sessionization
• Deduplication

• Inefficient
• Possibly incorrect
• Hard to maintain
• Unreliable

Few of the Challenges

Updates, Deletes and Upserts

25

UPDATE
Key Features
▪ Updates the column values for the rows that match a predicate

▪ When no predicate is provided, updates the column values for all rows

▪ Supports subqueries in the WHERE predicate, including IN, NOT IN, EXISTS,
NOT EXISTS, and scalar subqueries

Syntax
UPDATE languages

SET name = ‘python3’

WHERE name = ‘python’

26

DELETE
Key Features
▪ Deletes the rows that match a predicate

▪ When no predicate is provided, deletes all rows

▪ Supports subqueries in the WHERE predicate, including IN, NOT IN, EXISTS,
NOT EXISTS, and scalar subqueries

Syntax

DELETE FROM customers

WHERE id = 219897

27

MERGE (UPSERT)
Merge without Delta Lake -- approach#1
▪ Select all of the data from your table not including the rows you want to delete
▪ Create a new table based on the previous query
▪ Delete the original table
▪ Rename the new table to the original table name for downstream dependencies

Merge without Delta Lake -- approach#2

Analyze
updates table

& find out
partitions to

overwrite

Read all the
data in the

relevant
partitions in

the target table

Join those
partitions with

updates

Overwrite ALL
those

partitions in a
staging
location

Atomic publish

MERGE INTO customers -- Delta Lake table

USING updates

ON customers.customerId = source.customerId

WHEN MATCHED THEN

 UPDATE SET address = updates.address

WHEN NOT MATCHED

 THEN INSERT (customerId, address) VALUES
(updates.customerId, updates.address)

28

MERGE (UPSERT) -- Delta Lake

1. Inner-join between update and target using the condition in the ON clause → Returns to

the driver: list of files in target that contain matching rows

2. Short circuiting happens:

▪ If there were NO matching rows in target in step 1, use an append-only write to

append update to target
▪ Else: Use a full-outer-join to consolidate all the changes between update and target

3. Atomically commit to the Delta transaction log, removing the matching files of step 1 and

adding the new files from step 2

Steps of a MERGE (roughly speaking)
update table and target table

29

Optimize and Vacuum
a Delta Lake table

30

OPTIMIZE and VACUUM
▪ OPTIMIZE (with and without ZORDER) to do compaction and

improve data skipping.

31

OPTIMIZE events

WHERE date >= current_timestamp() - INTERVAL 1 day

ZORDER BY (eventType)

▪ VACUUM to clean up old (untracked) files to limit storage costs.

VACUUM events;

Time Travel

Demos

32

Further study and references

33

http://dbricks.co/dldg

34

http://dbricks.co/dldg

https://dbricks.co/ebLearningSpark

35

https://dbricks.co/ebLearningSpark

Docs and Talks
Documentation and best practices references

● Delta Lake Guide
● Delta Open Source Project
● Various optimizations in Delta Lake
● Delta Lake MERGE
● Delta Lake Concurrency Control
● Z-order curve and Hilbert curve
● Delta Streaming reads and writes
● Delta Lake: The Definitive Guide -- O'Reilly publishers
● Learning Spark -- O'Reilly publishers
●

Talks:
● Threat Detection and Response at Scale
● Winning the Audience with AI: How Comcast Built An Agile Data And Ai Platform At Scale (Comcast)
● Building Robust Production Data Pipelines with Databricks Delta
● Designing and Building Next Generation Data Pipelines at Scale with Structured Streaming
● Tech Talk series: Diving into Delta Lake

36

https://docs.azuredatabricks.net/delta/index.html
https://delta.io/
https://docs.microsoft.com/en-us/azure/databricks/delta/optimizations/
https://docs.microsoft.com/en-us/azure/databricks/spark/latest/spark-sql/language-manual/merge-into
https://docs.microsoft.com/en-us/azure/databricks/delta/concurrency-control
https://en.wikipedia.org/wiki/Z-order_curve
https://en.wikipedia.org/wiki/Hilbert_curve
https://docs.microsoft.com/en-us/azure/databricks/delta/delta-streaming
http://dbricks.co/dldg
https://dbricks.co/ebLearningSpark
https://youtu.be/SFeBJxI4Q98
https://youtu.be/5sDH_dJqoYo
https://www.youtube.com/watch?v=_-6jqiLnJUM
https://databricks.com/session/designing-and-building-next-generation-data-pipelines-at-scale-with-structured-streaming
https://www.youtube.com/playlist?list=PLTPXxbhUt-YVPwG3OWNQ-1bJI_s_YRvqP

Blogs
• Efficient Upserts into Data Lakes using Databricks Delta

• New Databricks Delta Features Simplify Data Pipelines

• Introducing Delta Time Travel for Large Scale Data Lakes

• Simplifying Change Data Capture with Databricks Delta

• Building a Real-Time Attribution Pipeline with Databricks Delta

• Processing Petabytes of Data in Seconds with Databricks Delta

• Simplifying Streaming Stock Data Analysis Using Databricks Delta

• Make Your Oil and Gas Assets Smarter by Implementing Predictive Maintenance with Databricks

• Build a Mobile Gaming Events Data Pipeline with Databricks Delta

• Delta Lake tagged blogs

• Diving Into Delta Lake: Unpacking The Transaction Log

37

https://databricks.com/blog/2019/03/19/efficient-upserts-into-data-lakes-databricks-delta.html
https://databricks.com/blog/2019/02/19/new-databricks-delta-features-simplify-data-pipelines.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/blog/2018/10/29/simplifying-change-data-capture-with-databricks-delta.html
https://databricks.com/blog/2018/08/09/building-a-real-time-attribution-pipeline-with-databricks-delta.html
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://databricks.com/blog/2018/07/19/simplify-streaming-stock-data-analysis-using-databricks-delta.html
https://databricks.com/blog/2018/07/19/make-your-oil-and-gas-assets-smarter-by-implementing-predictive-maintenance-with-databricks.html
https://databricks.com/blog/2018/07/02/build-a-mobile-gaming-events-data-pipeline-with-databricks-delta.html
https://databricks.com/blog/category/delta-lake
https://databricks.com/blog/2019/08/21/diving-into-delta-lake-unpacking-the-transaction-log.html

Webinars - YouTube playlist
Tech Talk | The Genesis of Delta Lake - An
Interview with Burak Yavuz
https://youtu.be/F-5t3QCI96g

Tech Talk | Diving into Delta Lake Part 1:
Unpacking the Transaction Log
https://youtu.be/F91G4RoA8is

38

https://www.youtube.com/playlist?list=PLTPXxbhUt-YVPwG3OWNQ-1bJI_s_YRvqP
https://youtu.be/F-5t3QCI96g
https://youtu.be/F91G4RoA8is

Webinars - YouTube playlist
Tech Talk | Diving into Delta Lake Part 2:
Enforcing and Evolving the Schema
https://youtu.be/tjb10n5wVs8

Tech Talk | Diving into Delta Lake Part 3: How do
DELETE, UPDATE, and MERGE work
https://youtu.be/7ewmcdrylsA

39

https://www.youtube.com/playlist?list=PLTPXxbhUt-YVPwG3OWNQ-1bJI_s_YRvqP
https://youtu.be/tjb10n5wVs8
https://youtu.be/7ewmcdrylsA

Thank you

40

