
Designing Payloads
for Event-Driven

Systems

Lorna Mitchell, Aiven

Event-Driven Systems

@lornajane

Events drive our applications in a way that the overnight batch process export never could.

Events could be one sensor reading, or a whole set of transactions with loads of detail

Producers could be a tiny IoT sensor, or a huge monolith software application, or anything in between. Data is all equal BUT must be designed for the applications that will consume it

Today's examples focus on Kafka...

Apache Kafka
"Apache Kafka is an open-source distributed event
streaming platform" - https://kafka.apache.org

• Storage designed for data streaming

•Messages are sent to "Topics"

•Data can be ... anything

@lornajane

https://kafka.apache.org
Topics are like channels in other platforms, they keep similar data together

Partitions help get related messages processed in order. Usually this is done by key

Payloads
The messages the machines send between themselves
• Large string/binary data

•No rules

• (but I do have advice!)

@lornajane

Kafka does not care, can't read the data, really doesn't matter.

Event-streaming might be relatively new but we can draw on prior art from message/job queues, APIs/webhooks.

Payload Design Tips

Apache Kafka Records
Use all the features of Apache Kafka's records

@lornajane

Header
•Metadata about the main payload

•Available without deserializing

source_type: sensor
trace_id: 1b15c98e-a52a-443d

@lornajane

Not everything can or should read all the data! Apache Kafka widely used in secure applications

Key
•Key usually sets the partition

•Can include multiple fields

{
 "type": "sensor_reading",
 "factory_id": 44891
}

@lornajane

Partitioning keeps records in order within identical keys. Adding values can help give more different keys and spread the load

Flat or Nested Structures?
•Always use a top level object structure (not an array)

•Group related fields together
{
 "stores_request_id": 10004352789,
 "parent_order": {
 "order_ref": 777289,
 "agent": "Mr Thing (1185)"
 },
 "bom": [
 {"part": "hinge_cup_sg7", "quantity": 18},
 {"part": "worktop_kit_sm", "quantity": 1},
 {"part": "softcls_norm2", "quantity": 9}
]}

@lornajane

Even if this was just products, use the product key. Future-you will thank you

More Data or Less Data?
• For small payloads, add the context fields

•Use lightweight representation rather than the full
object

•Be careful of triggering many extra lookups

•Hypermedia can help

@lornajane

payloads on Apache Kafka are typically MAX 1MB, which is a reasonable volume of text. You're not sending files are you??

Avoid DIY thundering herd! This gets worse with multiple hops in a system.

Big risk for pub/sub, great public example from github

Example: GitHub Webhooks
(snippet from the push webhook)
"user": {
 "login": "Codertocat",
 "id": 21031067,
 "avatar_url": "https://avatars1.githubusercontent.com/u/21031067?v=4",
 "url": "https://api.github.com/users/Codertocat",
 "html_url": "https://github.com/Codertocat",
 "followers_url": "https://api.github.com/users/Codertocat/followers",
 "following_url": "https://api.github.com/users/Codertocat/following{/other_user}",
 "gists_url": "https://api.github.com/users/Codertocat/gists{/gist_id}",
 "starred_url": "https://api.github.com/users/Codertocat/starred{/owner}{/repo}",
 "organizations_url": "https://api.github.com/users/Codertocat/orgs",
 "repos_url": "https://api.github.com/users/Codertocat/repos",
 "type": "User",
 },

@lornajane

Not all the user data, but enough to represent them and link to their page

Big repos have so many subscribers, a big push event would put measurable load on the GitHub servers

Also notice links 'hypermedia' where it's just a pointer to the information, no need for lots of searches or URL constructions that might change

A Note on Timestamps
•Apache Kafka includes publish time in the header.

•Consider adding payload-level timestamps.

• Timestamps only as accurate as your clock!

Pick a standard, any standard!
1615910306 or 2021-05-11T10:58:26Z

@lornajane

Add timestamp for humans, for example if a record is reprocessed later, or in a dead letter/retry queue

Event Tracing
Standards are great! https://opentelemetry.io
• Trace ID used by every event in the story

• Span ID in event, becomes Parent Span ID for child

(beautiful graph from honeycomb.io)

@lornajane

https://opentelemetry.io

Using and Evolving
Schemas

Data Formats
Some formats require schemas.
• JSON: text-based, few data types, schema optional

•XML: text-based, stronger typing, schema optional

• Language-Specific Serialization: (it depends!)

•Protobuf: binary format, handled by generated code

•Avro: binary format, schema required

@lornajane

Compression can be useful, saves network and payload limits, but does have overhead

Never invent compression or serialization. Really. Don't lock in to one tech stack either

Protobuf is very object-oriented, avro uses a schema registry

Schemas
Schemas enforce payload structure
•Avro format requires a schema

•message has schema version information

• used to look up fieldnames and reconstruct paylod

• Schema Registry holds the schema versions for each
topic

@lornajane

Enforced structure gives good sanity/guarantees

Field names are looked up from schema, not repeated over and over in every record

Producers and consumers communicate with the schema registry - in my example that's Karapace

Evolving Schemas
•Aim for backwards-compatible changes

• to rename: add the new field, keep the old one

• safe to add optional fields

• Each change is a new version

•Avro supports aliases and default values

@lornajane

Each message knows which schema version it was created with, schema registries understand versions

Avro doesn't support skipping fields, use null for those fields, or send a default value

In the event of emergency, create a new topic name for a new format of message. E.g. sensors.tanks.0

Example: Avro Schema
Avro schema example for sensor data

{
 "namespace": "io.aiven.example",
 "type": "record",
 "name": "MachineSensor",
 "fields": [
 {"name": "machine", "type": "string",
 "doc": "The machine whose sensor this is"},
 {"name": "sensor", "type": "string", "doc": "Which sensor was read"},
 {"name": "value", "type": "float", "doc": "Sensor reading"},
 {"name": "units", "type": "string", "doc": "Measurement units"}
]
}

@lornajane

Invalid data gets rejected, ensure contract

Enumerate fields, we will see them again later

Describing Payloads

Machine friendly: Schemas enforce structure.

Human friendly: Reference docs for what is expected.

AsyncAPI for Apache Kafka
AsyncAPI describes event-driven architectures
https://www.asyncapi.com

We can describe the:
• brokers and auth

• topics

• payloads

@lornajane

(is Dale's talk before or after mine? Send everyone there)

https://www.asyncapi.com
AsyncAPI is a sister to OpenAPI - today you are wearing your kafka hats but probably you do APIs too!

It supports reusable components, and can also reference your other-format schemas, such as Avro, or CloudEvents.

From the description, you can generate docs, code, integrations

Describing Payloads
The channels section of the AsyncAPI document
factorysensor:
 subscribe:
 operationId: MachineSensor
 summary: Data from the in-machine sensors
 bindings:
 kafka:
 clientId:
 type: string
 message:
 name: sensor-reading
 title: Sensor Reading
 schemaFormat: "application/vnd.apache.avro;version=1.9.0"
 payload:
 $ref: machine_sensor.avsc

@lornajane

Magic is in the last line

Documenting Payloads

@lornajane

Reference docs, great return on tiny investment! Like code comments, but different

Payloads and
Event-Driven Systems
Design with intention, embrace standards

In Summary: payload design tips, schemas and evolution, asyncapi

Internal or external systems: let's make integrations seamless

WORK those open standards

Resources
• Examples:

https://github.com/aiven/thingum-industries

•Blog post:
https://aiven.io/blog/tips-for-designing-payloads

•Aiven: https://aiven.io

•Karapace: https://karapace.io

•AsyncAPI: https://asyncapi.com

@lornajane

https://github.com/aiven/thingum-industries
https://aiven.io/blog/tips-for-designing-payloads
https://aiven.io
https://karapace.io
https://asyncapi.com

	Event-Driven Systems
	Apache Kafka
	Payloads
	Payload Design Tips
	Apache Kafka Records
	Header
	Key
	Flat or Nested Structures?
	More Data or Less Data?
	Example: GitHub Webhooks
	A Note on Timestamps
	Event Tracing
	Using and Evolving Schemas
	Data Formats
	Schemas
	Evolving Schemas
	Example: Avro Schema
	Describing Payloads
	AsyncAPI for Apache Kafka
	Describing Payloads
	Documenting Payloads
	Payloads and Event-Driven Systems
	Resources

