
Kubernetes and the
dynamic world in the cloud

Frank Conrad

Software Engineering Technical Leader

Cisco

scalable efficient low latency processing

1

Copyright © 2021 Frank Conrad

Businesses need dynamic scale

• full fill SLA all the time

• even during peak events like black friday,…

• get operational cost under control

• deliver reliable features

• „time is money“

2

Copyright © 2021 Frank Conrad

operational challenges
• jobs have very different resource requirements

• per weekday, end of week / month / quarter /…

• catch up of failures / needed reprocessing

• with fixed size cluster

• schedule optimization

• job can influence each other

• uninterruptible jobs

3

Copyright © 2021 Frank Conrad

what you ideally want

• right resources for each job for them to efficiently

• run jobs with the maximum independence

• add new or modify existing jobs with little to no effect to others

• don’t care about server idle time

• don’t overpay for resources which you don't need or only need for a short
time

4

Copyright © 2021 Frank Conrad

what scale up/down can achieve
• same cloud compute cost but faster results

• 24h 100cpu <-> 4h 800cpu

• 24h 100cpu <-> 2h 800cpu + 22h 36cpu

• commitments alternative (+ on top for events like black friday)

• 24h 100cpu -> 8h 100cpu + 16h 40cpu -> 40% saving

• 24h 100cpu (+30%) -> 8h 100cpu + 16h 40cpu -> 54% saving

• 24h 100cpu (+50%) -> 8h 100cpu + 16h 40cpu -> 60% saving

• 24h 100cpu (+100%) -> 8h 100cpu + 16h 40cpu -> 70% saving

5

Copyright © 2021 Frank Conrad

cloud
• you pay for what you provision by time

• resource/utilization based billing

• next to no lead time to get new resources

• you can give back what you don’t need

• all done in a few seconds/minutes

• but managing it is very provider dependent

6

Copyright © 2021 Frank Conrad

kubernetes in cloud
• has good cloud support

• built-in support for real dynamic clusters (cluster autoscaler)

• supports good CI/CD

• provider, vendor agnostic API / usage

• hide the complexity of different providers

• simpler version handling / migration for apps

• change from app per vm to app per container model

• operator support for simpler use

7

Copyright © 2021 Frank Conrad

k8s operators
• operator pattern

• bring ops/sre knowledge in code

• control operator via Custom Resource Definitions (CRD)

• mostly installed / updated via helm

• source to find them:

• https://operatorhub.io/

• https://github.com/operator-framework/awesome-operators

8

https://operatorhub.io/
https://github.com/operator-framework/awesome-operators

Copyright © 2021 Frank Conrad

What are the benefits for big data

• scalable jobs can produce faster results for similar costs

• compute can grow with the size of data

• cluster sized only to match current needs not to the max (black friday)

• recovery of failed job can run independently and faster by using higher
scale

9

Copyright © 2021 Frank Conrad

same numbers on use with cluster-autoscaler

• on gke cluster 1.18 with 18 node-pools scales by cluster auto-scaler

• new pod triggered new node take 30-45 sec get pod running

• deployment that’s starts 3k pods and trigger start of 1000 nodes  
-> take 4 min

• start 18k pods with large images which trigger 1000 nodes to start  
-> take 17min

• overhead per node: CPU ~200m, memory 2.7G or 5%

10

Copyright © 2021 Frank Conrad

Cluster auto scaler

• responsible to add (scale up) and remove (sale down) nodes to a cluster

• looks for unschedulable pods

• run simulation to find “right” node-pool and adds a node there

• looks for underutilized nodes to see if it can delete them

• provides the needed resources up to the limits specified in max node-
pool size

11

Copyright © 2021 Frank Conrad

cluster autoscaler scale down
• underutilized nodes are where sum of cpu and memory requests below 50% (or scale-down-utilization-threshold)

• for 10min (or scale-down-unneeded-time)

• looking for blocking pods

• local storage

• no controller

• special annotation

• cluster-autoscaler.kubernetes.io/safe-to-evict : false

• resources to run pod somewhere else are there

• during scale down

• respect pod disruption budget (PDB)

• respect GracefulTermination up to 10min (or max-graceful-termination-sec)

12

Copyright © 2021 Frank Conrad

what does it mean for us

• as typical big data jobs get strongly affected by restart of pods

• especially if multiple get affected at the same time or in rolling /
sequential way

• add the following annotation to pods to prevent it:

• cluster-autoscaler.kubernetes.io/safe-to-evict : false

13

Copyright © 2021 Frank Conrad

k8s scheduler
• find the “right” node to run the pod

• filter all nodes by strict limitation (available resources, nodeselector, affinity, tolerations,…)

• if no matching node found, then mark the pod unschedulable (to trigger auto scaler)

• for all matching nodes calculate the priority, done by weight via rules (plugins)

• this default behavior gives you a well distributed load on cluster with fixed size

• assign pod to node with the highest priority

• this is done pod by pod

• scheduler experiences latency when it involves high number of nodes/pods

• with priority classes you can influence the priority order

14

Copyright © 2021 Frank Conrad

what this means for us
• as scheduling is done pod by pod

• in many cases could happen that not all pods of a job get started

• end up with the job never finishing

• dead lock if multiple jobs get affected

• solutions:

• cluster auto scaler: add needed resources

• use other scheduler, which address the problem (gang schedule)

15

Copyright © 2021 Frank Conrad

other k8s scheduler
• This is the way to go on very large scale and/or limited resources.

• there are multiple custom schedulers or scheduler plugins available

• all have pros and cons

• all pods need to have scheduler assignment

• schedulerName: scheduler-name

• nodes (node-pools) should be only managed by ONE scheduler

• challenges to use provider based k8s cluster like gke/eks/aks,…

16

Copyright © 2021 Frank Conrad

custom schedulers
• kube-batch https://github.com/kubernetes-sigs/kube-batch

• gang schedule

• Volcano https://volcano.sh/en/

• batch optimized schedule integrated with many frameworks

• Apache YuniKorn http://yunikorn.apache.org/

• gang schedule

• add scheduler-plugins like github.com/kubernetes-sigs/scheduler-plugins

• leverage KEP 624-scheduling-framework

17

https://github.com/kubernetes-sigs/kube-batch
https://volcano.sh/en/
http://yunikorn.apache.org/
http://github.com/kubernetes-sigs/scheduler-plugins
https://github.com/kubernetes/enhancements/tree/master/keps/sig-scheduling/624-scheduling-framework

Copyright © 2021 Frank Conrad

cluster auto scaler: add needed resources

• in a cloud and when not a very large scale, this is the preferred way

• its simpler and has less dependencies

• set high max node count on used node-pools

• on k8s > 1.18 use schedule profile to create one with strong binpacking

• this not needed if running 1 pod per node

18

Copyright © 2021 Frank Conrad

node-pools with > 1 pod per node
• when multiple pods are running per node, all of them need to be finished

before the node can go away

• when multiple jobs sending pods to same node, the longest running
job(pod) will block scale down, even if its just one pod running 
-> higher costs than needed

• optimise on it:

• get strong binpacking, via on k8s > 1.18 use schedule profile with it

• gke autoscaling-profile: optimize-utilization

19

Copyright © 2021 Frank Conrad

dedicated node-pools
• create dedicated node-pool

• add specific label

• to bind pod to this

• example: dedicated: 4cpu-16mem

• add taints

• to block unwanted pod running there

• example: dedicated: 4cpu-16mem:NoSchedule

• set min to zero

• set max such that you never reach the limit normally (don’t forget the provider's quota)

20

Copyright © 2021 Frank Conrad

separate compute from storage

• default way in cloud na kubernetes

• flexibly change compute based on need

• a way to save network costs (across zones) / increase performance

• if cross zones charges is a problem

21

Copyright © 2021 Frank Conrad

a way to save network costs (across zones) /
increase performance

• by run compute in one zone but storage is multiple zones

• Object store (s3, gcs,…)

• network filesystems (nfs, efs,…)

• regional persistence disk (gcp/gke)

• in case of zone failure, the whole workload gets restarted in other zone

22

Copyright © 2021 Frank Conrad

change compute via statefulset
• allow flexible change compute based on need

• persistent volumes which are not node local (ebs,…)

• statefulset allow you the change compute resources on same storage

• by change resource requests and eventual node affinity / tolerations

• that triggers (rolling) update

• depending on the app you can do this multiple times per day

• usage

• hdfs, get larger nodes during runtime of bigger jobs to leverage node local

• kafka, to prepare for very high or low traffic

23

Copyright © 2021 Frank Conrad

change compute via operator
• if operator allow / support this

• by change resource requests and eventual node affinity / tolerations in CRD

• that trigger (rolling) update

• usage

• postgres zalando/postgres-operator)

• kafka (strimzi-kafka-operator)

• redis

24

Copyright © 2021 Frank Conrad

“cluster per job” on demand

• create the right sized cluster for a job

• use different node-pools to have different node profiles available

• control use via affinity and tolerations

• cluster-autoscaler will take care of starting / stopping nodes

• operators make this deployment simple

25

Copyright © 2021 Frank Conrad

spark operators
• https://github.com/radanalyticsio/spark-operator

• manage spark cluster in k8s and openshift

• can also work CM instead of CRD

• https://github.com/GoogleCloudPlatform/spark-on-k8s-operator

• highly sophisticated and has a good k8s integration

• affinity, life cycle hooks, …

26

https://github.com/radanalyticsio/spark-operator
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator

Copyright © 2021 Frank Conrad

spark-on-k8s-operator

• in workflow engine with no native integration

• create CRD SparkApplication

• watch for .status.applicationState.state

• COMPLETED

• FAILED

27

Copyright © 2021 Frank Conrad

airflow and k8s
• helm chart install / update

• can run completely within k8s

• together with postgres/mysql operator and redis operator, all of it runs on k8s and uses only standard
k8s functions

• has an integration to k8s

• to allow to run tasks as k8s pods

• to scale the executors dynamically

• use KEDA for that, which also give many other options for horizontally scaling your deployments
based on many external datasources.

• has native support for spark-on-k8s-operator

28

Copyright © 2021 Frank Conrad

flink operator

• https://github.com/lyft/flinkk8soperator

• blue-green deployment

• https://github.com/GoogleCloudPlatform/flink-on-k8s-operator

• good k8s integration

29

https://github.com/lyft/flinkk8soperator
https://github.com/GoogleCloudPlatform/flink-on-k8s-operator

Copyright © 2021 Frank Conrad

storage hints
• Object-stores (scale mostly automatically)

• reuse buckets

• same pattern

• pre condition

• define local volumes for tmp / shuffle data

• try local ssd

• never write to images

30

Copyright © 2021 Frank Conrad

image hints
• avoid large images if possible (multiple GBs)

• use the same base image across jobs (leveraging image cache)

• common data add to base first

• last job specific data

• for larger data like ML models

• put it on NFS server (aws efs, gcp filestore)

31

Copyright © 2021 Frank Conrad

uninterruptible (GPU) jobs
• run as jobs or static pods

• make cpu and memory request == limit

• to get QoS: Guaranteed

• minimize side effects from other pods on the node

• don’t forget to add to the pod:

• cluster-autoscaler.kubernetes.io/safe-to-evict : false

• if possible use save points

32

Copyright © 2021 Frank Conrad

how I could get this
• get k8s cluster in a cloud (gke,…)

• enable cluster autoscaler

• configure need node-groups with autoscaler

• install your needed operators / tools (best via helm):

• https://github.com/GoogleCloudPlatform/spark-on-k8s-operator

• https://github.com/GoogleCloudPlatform/flink-on-k8s-operator

• https://github.com/airflow-helm/charts/tree/main/charts/airflow

• https://github.com/zalando/postgres-operator

• https://github.com/spotahome/redis-operator

• optional https://keda.sh/docs/2.3/deploy/#helm

• hdfs https://github.com/Gradiant/charts

33

https://github.com/GoogleCloudPlatform/spark-on-k8s-operator
https://github.com/airflow-helm/charts/tree/main/charts/airflow
https://github.com/spotahome/redis-operator
https://keda.sh/docs/2.3/deploy/#helm
https://github.com/Gradiant/charts

Copyright © 2021 Frank Conrad

Think different

Thank you

Questions?

Thanks to Rishav Jalan for supporting this talk.

34

