
Tips and Tricks to
Scale Elasticsearch
for 1M RPMs and
Beyond

$ whoami

{
 "name": "Dainius Jocas",
 "company": {
 "name": "Vinted",
 "mission": "Make second-hand the first choice worldwide"
 },
 "role": "Staff Engineer",
 "website": "https://www.jocas.lt",
 "twitter": "@dainius_jocas",
 "github": "dainiusjocas",
 "author_of_oss": ["lucene-grep"],
 "also_known_for": ["Bernese Mountain dogs"]
}

2

Agenda

1. Intro
2. Scale as of January, 2020
3. IDs as keywords
4. Filtering on dates
5. Feature focused indices
6. Scale as of January, 2021
7. Discussion

3

Intro: Vinted and Elasticsearch

- Vinted is a second-hand clothes marketplace
- Operates in 10+ countries, 10+ languages
- Elasticsearch is in use since 2014
- Elasticsearch 1.4.1
- Today I’ll share tips and tricks learned while scaling Elasticsearch at Vinted

4

Elasticsearch Scale @Vinted as of January 2020 (1)

- Elasticsearch v5.8.6 (~end-of-life at that time)
- Upgrade to v6.3.x failed with 2-day downtime back in 2018
- 1 cluster of ~420 data nodes (each 14 CPU with 64GB RAM, bare metal)
- ~300K requests per minute (RPM) during peak hours
- ~160M documents
- 84 shards with 4 replicas
- p99 latency during peak hours was ~250 ms
- Slow Log (i.e latency >100ms) queries skyrockets during peak hours

Elasticsearch Scale @Vinted as of January 2020 (2)

- The company saw Elasticsearch as a business risk(!)
- Back-end developers didn’t want to touch it
- The usage of the Vinted platform was expected to at least double by October

(similar increase in usage of Elasticsearch and more servers is a bad idea)
- Functionality on top of Elasticsearch just accumulated over the years, no

oversight, no clear ownership
- SRE were on the Elasticsearch duty (hint: server restart doesn’t help all that

much when the Elasticsearch is overloaded)

Replayed 10k queries during the “easy Tuesday”

IDs as keywords

IDs as keywords (1)

{
 "query": {
 "bool": {
 "filter": [
 {
 "terms": {
 "country_id": [2,4]
 }
 }
]
 }
 }
}

IDs as keywords (2): context

- Elasticsearch indexed data from MySQL (check vinted.engineering blog on
details for that)

- Common practice for Ruby on Rails apps is to create database tables with
primary keys as auto-increment integers

- Q: Which Elasticsearch data type to use?
- A: integer, because why not?

https://vinted.engineering/

IDs as keywords (3)

IDs as keywords (4): TL;DR of the blog post

- Before: integers were indexed as padded string terms
- After: integers indexed as block k-d tree (BKD)
- Change in Lucene get into Elasticsearch since 5.0
- Numeric data types were optimized for range queries
- Numeric data types continued to support terms queries

IDs as keywords (5): from Vinted point of view

- On IDs we don’t do range queries
- We use IDs for simple filters with terms query
- The “optimized” integer data type for our use case degraded query latency
- How much?
- For our workload it was a ~15% instant decrease in p99 latency, ~20ms
- We use around 10 such fields for filtering in every search query
- The required change was as simple as changing the index mappings and

reindexing the data
- No query changes required

IDs as keywords (6): summary

- Remember that Vinted uses Elasticsearch since pre 5.0
- At that time it was OK to index IDs as Elasticsearch integers
- Post 5.0 IDs as integers became a performance issue
- Such a change that brakes nothing can easily slip under the regular

developers radar and then could backfire badly
- Outcome is that regular developers think that Elasticsearch performs badly
- Highly recommend to try this optimization on your data

Filtering on Dates

Date Math (1)

{
 "query": {
 "bool": {
 "filter": [
 {
 "range": {
 "created_at": {
 "gte": "now-7d"
 }
 }
 }
]
 }
 }
}

Date Math (2)

- From the developer POV, it is simple, you just hardcode `now-7d`
- Note that most queries that use now (see Date Math) cannot be cached
- If most of your queries are using Date Math then handling more queries

requires more CPU, because no cache hits
- Cached queries clauses -> massive gains in the cluster throughput
- My advice: always use explicit timestamps in production (in Kibana the date

math is OK)

Date filters (1)

{
 "query": {
 "bool": {
 "filter": [
 {
 "range": {
 "created_at": {
 "lte": "2021-06-16T09:55:00Z"
 }
 }
 }
]
 }
 }
}

Date filters (2)

- This query clause asks Elasticsearch to “collect docs that are not newer than
X”

- What if the X is meant to be now and your documents are accumulated over
the last 10 year?

- Then this filter matches ~99% of all docs in your indices
- Not a good “filter”

Date filters (3)

{
 "query": {
 "bool": {
 "must_not": [
 {
 "range": {
 "created_at": {
 "gt": "2021-06-16T09:55:00Z"
 }
 }
 }
]
 }
 }
}

Date filters (4)

- This query clause asks Elasticsearch to “collect docs that are not newer than
X”

- What if the X is now and your documents are accumulated over 10 year?
- Then this filter matches ~1% of all docs in your indices
- A good “filter”, i.e. more specific filter is a good filter
- Bonus tip from docs: “if you must filter by timestamp, use a coarse granularity

(e.g. round timestamp to 5 minutes) so the query value changes infrequently”

- For our setup the inversion of the filter reduced the p99 latency by ~15%,
~10ms

Filtering on Dates: summary

- Don’t use Date Math in production
- Write filter clauses on timestamp (or any other data type) in a way that it

matches fewer documents

Feature focused indices

- Large collection of documents
- Stored in one index (many shards)
- Multiple types of queries are coming to that index, e.g. search and aggs
- When the search traffic increases the p99 latency grows
- Considered splitting the workload into many clusters but decided not to do it

because of operational complexity and Elasticsearch cluster should be, well,
elastic

Feature focused indices (1): context

Feature focused indices (2): idea

- Same one huge cluster
- Index the same data multiple times
- A different index name with same mappings just to begin experimentation
- Route the traffic to the new index
- Optimize later
- “Divide and conquer” strategy

Feature focused indices: example

- We have a query that searches for newest items grouped by favourite
brands that were uploaded over the last week

- Brands are favorited by the users
- Elasticsearch, top_hits aggregation
- The data shape is the same as in the main catalog search
- Only “recent” data is really needed

Feature focused indices: request cache POV

- Request cache is a shard-level request cache that caches the local results
on each shard.

- Useful for frequently used search requests for aggregations
- Request cache hit rate for the specialized index: 0.426
- Request cache hit rate for the catch-all index: 0.061
- The two different workloads are not interfering with each other

Feature focused indices: summary

- Given that your Elasticsearch cluster has enough capacity
- Split query traffic by use-case and then optimize it

- 👍 Easy to prioritize: by # queries
- 👍 Simpler to measure optimizations
- 👎 When a common attribute changes all indices have to be reindexed

Congrats! We are done
with lessons

Elasticsearch Scale @Vinted as of June 2021 (1)

- ES 7.9.3
- 3 clusters each ~160 data nodes (each 16 CPU with 48GB RAM, bare metal)
- One offline cluster of similar size for testing (upgrades, cluster setup, etc.)
- ~1000K RPM during peak hours
- ~360M documents
- p99 latency during peaks ~150 ms
- Timeouts (>500ms) are 0.0367% of all queries

Elasticsearch Scale @Vinted as of January 2021 (2)

- Team (8 people strong) is responsible for Elasticsearch related features
- Regular capacity testing for 2x load in terms of

- document count
- query throughput

- Elasticsearch is seen as the system that can accommodate the growth
- Functionality is tested performance wise before releasing to production
- The team members rotate on duty

- Keeping clusters operational
- Maintenance tasks from backlog

- Is everything perfect? No.
- Elasticsearch is resource hungry
- Version upgrades still has to be checked before releasing

- Offline testing cluster helps with that
- Machine Learning engineers insist that Elasticsearch is not up for their tasks

- Despite the fact that the search ranking data is used for their model training
- Search re-ranking is done outside of Elasticsearch (e.g. operational complexity)

- Elasticsearch default installation offers very few tools for search relevance
work

Discussion (1)

Discussion (2)

Thank You!

