
Tips and Tricks to 
Scale Elasticsearch 
for 1M RPMs and 
Beyond



$ whoami

{
  "name": "Dainius Jocas",
  "company": {
    "name": "Vinted",
    "mission": "Make second-hand the first choice worldwide"
  },
  "role": "Staff Engineer",
  "website": "https://www.jocas.lt",
  "twitter": "@dainius_jocas",
  "github": "dainiusjocas",
  "author_of_oss": ["lucene-grep"],
  "also_known_for": ["Bernese Mountain dogs"]
}
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Intro: Vinted and Elasticsearch

- Vinted is a second-hand clothes marketplace
- Operates in 10+ countries, 10+ languages
- Elasticsearch is in use since 2014
- Elasticsearch 1.4.1
- Today I’ll share tips and tricks learned while scaling Elasticsearch at Vinted

4



Elasticsearch Scale @Vinted as of January 2020 (1)

- Elasticsearch v5.8.6 (~end-of-life at that time)
- Upgrade to v6.3.x failed with 2-day downtime back in 2018
- 1 cluster of ~420 data nodes (each 14 CPU with 64GB RAM, bare metal)
- ~300K requests per minute (RPM) during peak hours
- ~160M documents
- 84 shards with 4 replicas
- p99 latency during peak hours was ~250 ms
- Slow Log (i.e latency >100ms) queries skyrockets during peak hours



Elasticsearch Scale @Vinted as of January 2020 (2)

- The company saw Elasticsearch as a business risk(!)
- Back-end developers didn’t want to touch it
- The usage of the Vinted platform was expected to at least double by October 

(similar increase in usage of Elasticsearch and more servers is a bad idea)
- Functionality on top of Elasticsearch just accumulated over the years, no 

oversight, no clear ownership
- SRE were on the Elasticsearch duty (hint: server restart doesn’t help all that 

much when the Elasticsearch is overloaded)



Replayed 10k queries during the “easy Tuesday”





IDs as keywords



IDs as keywords (1)

{
  "query": {
    "bool": {
    "filter": [
       {
           "terms": {
          "country_id": [2,4]
          }
     }
      ]
    }
  }
}



IDs as keywords (2): context

- Elasticsearch indexed data from MySQL (check vinted.engineering blog on 
details for that)

- Common practice for Ruby on Rails apps is to create database tables with 
primary keys as auto-increment integers

- Q: Which Elasticsearch data type to use?
- A: integer, because why not?

https://vinted.engineering/


IDs as keywords (3)



IDs as keywords (4): TL;DR of the blog post

- Before: integers were indexed as padded string terms
- After: integers indexed as block k-d tree (BKD)
- Change in Lucene get into Elasticsearch since 5.0
- Numeric data types were optimized for range queries
- Numeric data types continued to support terms queries



IDs as keywords (5): from Vinted point of view

- On IDs we don’t do range queries
- We use IDs for simple filters with terms query
- The “optimized” integer data type for our use case degraded query latency
- How much? 
- For our workload it was a ~15% instant decrease in p99 latency, ~20ms
- We use around 10 such fields for filtering in every search query
- The required change was as simple as changing the index mappings and 

reindexing the data
- No query changes required



IDs as keywords (6): summary

- Remember that Vinted uses Elasticsearch since pre 5.0
- At that time it was OK to index IDs as Elasticsearch integers
- Post 5.0 IDs as integers became a performance issue
- Such a change that brakes nothing can easily slip under the regular 

developers radar and then could backfire badly
- Outcome is that regular developers think that Elasticsearch performs badly
- Highly recommend to try this optimization on your data



Filtering on Dates 



Date Math (1)

{
  "query": {
    "bool": {
      "filter": [
        {
          "range": {
            "created_at": {
              "gte": "now-7d"
            }
          }
     }
      ]
    }
  }
}



Date Math (2)

- From the developer POV, it is simple, you just hardcode `now-7d`
- Note that most queries that use now (see Date Math) cannot be cached
- If most of your queries are using Date Math then handling more queries 

requires more CPU, because no cache hits
- Cached queries clauses -> massive gains in the cluster throughput
- My advice: always use explicit timestamps in production (in Kibana the date 

math is OK)



Date filters (1)

{
  "query": {
    "bool": {
      "filter": [
        {
          "range": {
            "created_at": {
              "lte": "2021-06-16T09:55:00Z"
            }
          }
     }
      ]
    }
  }
}



Date filters (2)

- This query clause asks Elasticsearch to “collect docs that are not newer than 
X”

- What if the X is meant to be now and your documents are accumulated over 
the last 10 year?

- Then this filter matches ~99% of all docs in your indices
- Not a good “filter”



Date filters (3)

{
  "query": {
    "bool": {
      "must_not": [
        {
          "range": {
            "created_at": {
              "gt": "2021-06-16T09:55:00Z"
            }
          }
     }
      ]
    }
  }
}



Date filters (4)

- This query clause asks Elasticsearch to “collect docs that are not newer than 
X”

- What if the X is now and your documents are accumulated over 10 year?
- Then this filter matches ~1% of all docs in your indices
- A good “filter”, i.e. more specific filter is a good filter
- Bonus tip from docs: “if you must filter by timestamp, use a coarse granularity 

(e.g. round timestamp to 5 minutes) so the query value changes infrequently”

- For our setup the inversion of the filter reduced the p99 latency by ~15%, 
~10ms







Filtering on Dates: summary

- Don’t use Date Math in production
- Write filter clauses on timestamp (or any other data type) in a way that it 

matches fewer documents



Feature focused indices



- Large collection of documents
- Stored in one index (many shards)
- Multiple types of queries are coming to that index, e.g. search and aggs
- When the search traffic increases the p99 latency grows
- Considered splitting the workload into many clusters but decided not to do it 

because of operational complexity and Elasticsearch cluster should be, well, 
elastic

Feature focused indices (1): context



Feature focused indices (2): idea

- Same one huge cluster
- Index the same data multiple times
- A different index name with same mappings just to begin experimentation
- Route the traffic to the new index
- Optimize later
- “Divide and conquer” strategy



Feature focused indices: example

- We have a query that searches for newest items grouped by favourite 
brands that were uploaded over the last week

- Brands are favorited by the users
- Elasticsearch, top_hits aggregation
- The data shape is the same as in the main catalog search
- Only “recent” data is really needed



Feature focused indices: request cache POV

- Request cache is a shard-level request cache that caches the local results 
on each shard.

- Useful for frequently used search requests for aggregations
- Request cache hit rate for the specialized index: 0.426
- Request cache hit rate for the catch-all index: 0.061
- The two different workloads are not interfering with each other



Feature focused indices: summary

- Given that your Elasticsearch cluster has enough capacity
- Split query traffic by use-case and then optimize it

- 👍 Easy to prioritize: by # queries
- 👍 Simpler to measure optimizations
- 👎 When a common attribute changes all indices have to be reindexed



Congrats! We are done 
with lessons



Elasticsearch Scale @Vinted as of June 2021 (1)

- ES 7.9.3
- 3 clusters each ~160 data nodes (each 16 CPU with 48GB RAM, bare metal)
- One offline cluster of similar size for testing (upgrades, cluster setup, etc.)
- ~1000K RPM during peak hours
- ~360M documents
- p99 latency during peaks ~150 ms
- Timeouts (>500ms) are 0.0367% of all queries



Elasticsearch Scale @Vinted as of January 2021 (2)

- Team (8 people strong) is responsible for Elasticsearch related features
- Regular capacity testing for 2x load in terms of

- document count
- query throughput

- Elasticsearch is seen as the system that can accommodate the growth
- Functionality is tested performance wise before releasing to production
- The team members rotate on duty

- Keeping clusters operational
- Maintenance tasks from backlog



- Is everything perfect? No.
- Elasticsearch is resource hungry
- Version upgrades still has to be checked before releasing

- Offline testing cluster helps with that
- Machine Learning engineers insist that Elasticsearch is not up for their tasks

- Despite the fact that the search ranking data is used for their model training
- Search re-ranking is done outside of Elasticsearch (e.g. operational complexity)

- Elasticsearch default installation offers very few tools for search relevance 
work

Discussion (1)



Discussion (2)



Thank You!


