
Building a New Big Data Distribution

Based on Kubernetes – With a Twist!

15th June 2021 | Track Scale | Format Talk Intermediate

@

Hadoop Distributions over Time

2008 2014 20192016 2017

How Did This Impact the per Node Price?

2008 2014 20192016 2017

The History of Stackable

Kubernetes on One (Well, Two) Slide(s)

An orchestration
framework to manage

services

Declarative by nature -
you define what reality

should look like and
Kubernetes goes and

makes it happen

(This has some shortcomings,
more on that later)

Kubernetes has built-in
data types

Extensible via Custom
Resource Definitions

Kubernetes from Outer Space

api-server

etcd

kubelet

control-plane

persist

executedeclare

reconcile

Stackable &

Kubernetes

Stackable & Kubernetes

We wanted to build a distribution on top of Kubernetes.

This allows hybrid scenarios:
• Part of the stack on “bare metal”
• Part in native Kubernetes in containers

Use the Kubernetes control plane and concepts (e.g. Operators,GitOps, …) but allow reusing existing
admin knowledge (e.g. systemd, OS Packages, …)

So, we came up with a way to use the best of both worlds.

Customers told us “no”.

Stackable & Kubernetes

api-server

etcd

kubelet

control-plane

persist

executedeclare

reconcile

Stackable
agent

Stackable operators

Stackable & Kubernetes

We only use a few core concepts at
the moment:

• Pod

• Node

• ConfigMap

• Secret

• …add more as needed

Operators

Operator

let operator = extract_brain(human);

operator.run(my_cluster);

Operator

Operator

KafkaCluster

Pod ConfigMap

Operator Best Practices

• Reconcile loop

• Common labels

• Common nomenclature

• Common status & events

• Common configuration/CRDs

• Common monitoring, tracing, metrics

• Hacks: Imperative commands

Our distribution should
feel consistent hence

we decided to write our
own framework.

Reconcile Loops – Two Alternative Styles

pub fn reconcile(resource) -> ReconcileResult {

let changed = reconcile_pod1(...)?;

if changed {

return ReconcileResult::Requeue;

}

let changed = reconcile_pod2(...)?;

if changed {

return ReconcileResult::Requeue;

}

...

}

pub fn reconcile(resource) -> ReconcileResult {

reconcile_pod1().await?;

reconcile_pod2().await?;

...

}

SM
A

LL
 S

TE
P

S

H
U

G
E

ST
EP

S

Stackable

Operator Framework

Stackable Operator Framework

Lots of convenience functions

• Retrieve existing Pods
• Retrieve/Set conditions
• Remove pods
• …

Often used Higher Level
Abstractions

• Remove unneeded pods
• Find nodes which should have

pods
• …

This requires a few conventions about what our objects look like!

So, How Does It Work in Real Life?

self.init_status()

.then(self.context.delete_illegal_pods(ContinuationStrategy::AllRequeue))

.then(self.context.wait_for_terminating_pods())

.then(self.context.wait_for_running_and_ready_pods())

.then(self.context.delete_excess_pods(ContinuationStrategy::OneRequeue))

.then(self.create_missing_pods())

Why Rust?

Most Kubernetes code & 3rd-party operators are written in Go.
Why did you choose Rust?

🤷♂️ We didn’t know either language

✌️ We tried both

📚 We looked at the library ecosystem

💖 We liked Rust. End of story.

🔎 If you want details:

• Error Handling

• Enums

• Generics

• No GC

• Security

🍬Go’s structural typing is sweet

Rust Kubernetes Ecosystem - k8s-openapi

This crate is a Rust Kubernetes API client. It contains bindings for the resources and operations in the

Kubernetes client API, auto-generated from the OpenAPI spec.

This crate is not generated using Swagger or the OpenAPI Generator directly, as clients generated by

the common client generator are. This gives this crate a few important advantages.

More Details on
https://github.com/Arnavion/k8s-openapi

https://github.com/Arnavion/k8s-openapi

Rust Kubernetes Ecosystem - kube-rs

This crate is a Rust Kubernetes API client. It contains bindings for the resources and operations in the

Kubernetes client API, auto-generated from the OpenAPI spec.

This crate is not generated using Swagger or the OpenAPI Generator directly, as clients generated by

the common client generator are. This gives this crate a few important advantages.

More Details on
https://github.com/clux/kube-rs

https://github.com/clux/kube-rs

This crate is a Rust Kubernetes API client. It contains bindings for the resources and operations in the

Kubernetes client API, auto-generated from the OpenAPI spec.

This crate is not generated using Swagger or the OpenAPI Generator directly, as clients generated by

the common client generator are. This gives this crate a few important advantages.

Rust Kubernetes Ecosystem - Krustlet

More Details on
https://github.com/deislabs/krustlet

Demo Time!

Lars Francke

lars.francke@stackable.de
+49 4103 926 3100
www.stackable.de

Contact me on

Thank You!
Sönke Liebau

soenke.liebau@stackable.de
+49 4103 926 3100
www.stackable.de

Contact me on

mailto:lars.francke@stackable.de
https://www.stackable.de/
mailto:soenke.liebau@stackable.de
https://www.stackable.de/
https://github.com/lfrancke
https://de.linkedin.com/in/larsfrancke
https://twitter.com/lars_francke?lang=de
https://www.xing.com/profile/Lars_Francke
https://github.com/soenkeliebau
https://de.linkedin.com/in/soenkeliebau
https://twitter.com/soenkeliebau?lang=de
https://www.xing.com/profile/Soenke_Liebau

